From Local to Global Stability in Stochastic Processing Networks Through Quadratic Lyapunov Functions

نویسندگان

  • A. B. Dieker
  • J. Shin
چکیده

We construct a generic, simple, and efficient scheduling policy for stochastic processing networks, and provide a general framework to establish its stability. Our policy is randomized and prioritized: with high probability it prioritizes jobs which have been least routed through the network. We show that the network is globally stable under this policy if there exists an appropriate quadratic ‘local’ Lyapunov function that provides a negative drift with respect to nominal loads at servers. Applying this generic framework, we obtain stability results for our policy in many important examples of stochastic processing networks: open multiclass queueing networks, parallel server networks, networks of input-queued switches, and a variety of wireless network models with interference constraints. Our main novelty is the construction of an appropriate ‘global’ Lyapunov function from quadratic ‘local’ Lyapunov functions, which we believe to be of broader interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

Mean square exponential stability of stochastic delay cellular neural networks

The dynamical behaviors of stochastic neural networks have appeared as a novel subject of research and applications, such as optimization, control, and image processing(see [1-12]). Obviously, finding stability criteria for these neural networks becomes an attractive research problem of importance. Some well results have just appeared, for example, in [1-5], for stochastic delayed Hopfield neur...

متن کامل

Global Stabilization of Attitude Dynamics: SDRE-based Control Laws

The State-Dependant Riccati Equation method has been frequently used to design suboptimal controllers applied to nonlinear dynamic systems. Different methods for local stability analysis of SDRE controlled systems of order greater than two such as the attitude dynamics of a general rigid body have been extended in literature; however, it is still difficult to show global stability properties of...

متن کامل

New Conditions for Global Stability of Neural Networks with Application to Linear and Quadratic Programming Problems

In this paper, we present new conditions ensuring existence, uniqueness, and Global Asymptotic Stability (GAS) of the equilibrium point for a large class of neural networks. The results are applicable to both symmetric and nonsymmetric interconnection matrices and allow for the consideration of all continuous nondecreasing neuron activation functions. Such functions may be unbounded (but not ne...

متن کامل

Comments on "Lur'e systems with multilayer perceptron and recurrent neural networks: absolute stability and dissipativity

In this paper we consider Lur'e systems where a linear dynamical system is feedback interconnected to a multilayer perceptron nonlinearity, corresponding to recurrent neural networks with two hidden layers. For this class of nonlinear systems, we present suu-cient conditions for global asymptotic stability based on quadratic and Lur'e-Postnikov Lyapunov functions. Suucient conditions for dissip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2013